TTGIR #blocked = #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0], CTAsPerCGA = [1], CTASplitNum = [1], CTAOrder = [0]}> module attributes {"triton_gpu.compute-capability" = 86 : i32, "triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 : i32, "triton_gpu.threads-per-warp" = 32 : i32} { tt.func public @add_kernel_0d1d2d3de(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: !tt.ptr {tt.divisibility = 16 : i32}, %arg3: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} { %c1024_i32 = arith.constant 1024 : i32 %0 = tt.get_program_id x : i32 %1 = arith.muli %0, %c1024_i32 : i32 %2 = tt.make_range {end = 1024 : i32, start = 0 : i32} : tensor<1024xi32, #blocked> %3 = tt.splat %1 : (i32) -> tensor<1024xi32, #blocked> %4 = arith.addi %3, %2 : tensor<1024xi32, #blocked> %5 = tt.splat %arg3 : (i32) -> tensor<1024xi32, #blocked> %6 = arith.cmpi slt, %4, %5 : tensor<1024xi32, #blocked> %7 = tt.splat %arg0 : (!tt.ptr) -> tensor<1024x!tt.ptr, #blocked> %8 = tt.addptr %7, %4 : tensor<1024x!tt.ptr, #blocked>, tensor<1024xi32, #blocked> %9 = tt.load %8, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32, #blocked> %10 = tt.splat %arg1 : (!tt.ptr) -> tensor<1024x!tt.ptr, #blocked> %11 = tt.addptr %10, %4 : tensor<1024x!tt.ptr, #blocked>, tensor<1024xi32, #blocked> %12 = tt.load %11, %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<1024xf32, #blocked> %13 = arith.addf %9, %12 : tensor<1024xf32, #blocked> %14 = tt.splat %arg2 : (!tt.ptr) -> tensor<1024x!tt.ptr, #blocked> %15 = tt.addptr %14, %4 : tensor<1024x!tt.ptr, #blocked>, tensor<1024xi32, #blocked> tt.store %15, %13, %6 {cache = 1 : i32, evict = 1 : i32} : tensor<1024xf32, #blocked> tt.return } }